Recursive sequences

Bernie wishes to impress his math teacher with a new theorem. He observes some sequences which satisfy a recursive relation

$$
a_{n+2}=2 a_{n+1}-a_{n}+2
$$

Each sequence of his concern starts with number $a_{1}=1$, but the second numbers differ. Bernie thinks he found a nice rule, which he wants to check. He thinks that no matter what the number a_{2} is and no matter which n he chooses, one always can find an element of the sequence which equals $a_{n} a_{n+1}$.

You can help him in his investigations by finding required elements.

Input

There is $\mathrm{K}(1 \leq \mathrm{K} \leq 1000)$ lines of standard input. Each consists of two integer numbers $a_{2}, n(2 \leq$ $\left.a_{2} \leq 1000,1 \leq n \leq 1000000000\right)$ separated by spaces.

The line K+1 will contain two zeros, which shouldn't be processed.

Output

Write out K lines of output - one for each testcase. For each testcase the line should contain the smallest positive integer m such that $a_{m}=a_{n} a_{n+1}$ or the number 0 if such an m doesn't exist.

Example

Input:

21
22
24
35
00
Output:
2
4
14
26

Scoring

For solving this problem you will score 10 points.

