UBoat

A submarine traveling at speed $\mathrm{V}[\mathrm{m} / \mathrm{s}]$ sends a supersonic impulse of frequency $\mathrm{F}_{1}[\mathrm{kHz}]$. The signal bounces off a ship and comes back after time T [s] with frequency $F_{2}[k H z]$. Speed of sound in water equals $1450[\mathrm{~m} / \mathrm{s}]$. Calculate the distance between the submarine and the ship in meters.

Input

There is $K(1<=K<=30000)$ lines of standard input. Each consists of four numbers T, V, F_{1}, F_{2} ($1<=\mathrm{T}<=3000,0.1<=\mathrm{V}<=20,20<=\mathrm{F}_{1}, \mathrm{~F}_{2}<=20000$) separated by spaces. There $\mathrm{T}-$ time of the supersonic impulse in seconds, V - speed of the submarine in meters per second, F_{1} - frequency of the impulse when sending, F_{2} - frequency of the impulse when received. All the input values are given with 0.1 accuracy. In the line number $\mathrm{K}+1$ there are four zeros which should not be processed.

Output

Write K lines of output consistent with the input. In each line the distance between the submarine and the ship in meters.

The judge will allow relative error up to 1 percent.

Example

Input:

41.53031
52.13537

0000

Output:

2900
3625

Scoring

For solving this problem you will score 10 points.

