Rectangles

You are given a set S of N points in the plane and must count the number of distinct axis-parallel rectangles whose four vertices all lie in S (that is, count those rectangles which have two sides parallel to the \mathbf{x}-axis, and the other two sides parallel to the \mathbf{y}-axis).

Input

The first line of the input is $N(1 \leq N \leq 250000)$, the number of points in S. N lines then follow, where the i -th line is of the form " $x_{i} y_{i}^{\prime}$ ", giving the coordinates of a point $\left(x_{i}, y_{i}\right)$ in S. All given points are distinct, and all coordinates fit into a 32-bit signed integer.

Output

Your output should consist of a single number, the number of distinct axis-parallel rectangles whose four vertices all lie in S, followed by a newline.

Example

Input:

6
-1 0
-1 1
00
01
10
11
Output:
3

