Wow Square

"Wow Square" This problem is about the perfect square number, given a positive integer \mathbf{n} your task is to find two integers \mathbf{x} and \mathbf{y} that satisfy:

1) $\mathbf{x}<\mathbf{y} \leq \boldsymbol{n}$. Remember that \mathbf{x} is always less than \mathbf{y}.
2) $\mathbf{x}^{*} \mathbf{y}$ is a perfect square. This means that there's a positive integer \mathbf{z} such that $\mathbf{z}^{*} \mathbf{z}=\mathbf{a}^{*} \mathbf{b}$.
3) $\mathbf{x}^{\star} \mathbf{y}$ is maximum. Find $\mathbf{x}^{\star} \mathbf{y}$ as large as possible without violating previous rules.
$\left.4^{*}\right) \mathbf{y}$-x is maximum. If there still multiple solution \mathbf{x}, \mathbf{y} that satisfy all previous rules, choose \mathbf{x}, \mathbf{y} with largest $\mathbf{y}-\mathbf{x}$.

Input

First line, there's an integer $\mathbf{T}(1 \leq \mathbf{T} \leq 10,000)$ then \mathbf{T} cases follow.
Each test case there's an integer $\mathbf{n}(4 \leq \mathbf{n} \leq 10,000,000)$.

Output

For each test case, output \mathbf{x} and \mathbf{y} with this fotmat: $\mathbf{x}^{\star} \mathbf{y}$. see the examples for more detail.

Example

Input:

6

4
10
15
20
321
1020
Output:
$1^{*} 4$
$4^{*} 9$
$3^{*} 12$
$8^{* 18}$
$245 * 320$
864*1014
Score is length of your code.

