Phasmophobia

Okayu and Korone are playing Phasmophobia.
There are \mathbf{N} rooms, numbered $\mathbf{1}$ to \mathbf{N}. Each player has to enter the \mathbf{N} rooms in an order.
Let \mathbf{P} be the permutation of size \mathbf{N} representing the order of rooms Okayu enters, and \mathbf{Q} for Korone.
Korone doesn't want to be too far from Okayu, so they set up a plan as the following:

- Okayu will enter the rooms in numerical order. Formally, $P=\{1,2,3, \ldots, N\}$.
- Korone will enter the rooms in a way such that $\left|\mathbf{P}_{\mathbf{i}}-\mathbf{Q}_{\mathbf{i}}\right| \leq \mathrm{K}$ for every $\mathbf{1} \leq \mathrm{i} \leq \mathbf{N}$.

How many configurations can Korone enter the rooms? Since the answer can be large, print the answer modulo $10^{9}+7$.

Input Format

The first and only line contains two integers \mathbf{N} and \mathbf{K}.

Output Format

Print an integer denoting the number of permutations Q satisfying the conditions above in modulo $10^{9}+\mathbf{7}$.

Sample Input 1

31

Sample Output 1

3

Sample Input 2

32

Sample Output 2

6

Explanation

In sample 1, the possible configurations are $\{\mathbf{1}, \mathbf{2}, \mathbf{3}\},\{\mathbf{2}, \mathbf{1}, \mathbf{3}\}$, and $\{\mathbf{1 , 3 , 2 \}}$.

In sample 2, all permutations are valid.

Constraints

$1 \leq \mathrm{N} \leq 1000$
$1 \leq K \leq 5$

