Tree Sum

Let $L x$ denote the level of a node x in a rooted tree. $L x$ is 1 if x is the root, otherwise $L x=1+L y$, where y is the parent of x in the rooted tree.

You need to calculate the sum $\mathrm{Lx}{ }^{\wedge} \mathrm{K}$ for all nodes x in the tree.

Input

The first line contains the number of test cases T. T test cases follow. The first line of each test case contains N and K , where N is the number of nodes in the tree. The following $\mathrm{N}-1$ lines contain two integers ai and bi, indicating an edge between nodes ai and bi in the tree. There is a blank line after each test case.

Output

Output N lines for each test case. The i-th line should contain the required sum if the tree is rooted at node i. Output all values modulo 1000000007. Output a blank line after each test case.

Example

Sample Input:

2
32
01
12
33
01
02

Sample Output:

14
9
14
17
36
36

Constraints

$1<=$ T <= 10
$1<=\mathrm{N}<=20000$
$1<=\mathrm{K}<=20$
$0<=$ ai, bi < N

