ELIS - Easy Longest Increasing Subsequence
Given a list of numbers A output the length of the longest increasing subsequence. An increasing subsequence is defined as a set {i0 , i1 , i2 , i3 , ... , ik} such that 0 <= i0 < i1 < i2 < i3 < ... < ik < N and A[ i0 ] < A[ i1 ] < A[ i2 ] < ... < A[ ik ]. A longest increasing subsequence is a subsequence with the maximum k (length).
i.e. in the list {33 , 11 , 22 , 44}
the subsequence {33 , 44} and {11} are increasing subsequences while {11 , 22 , 44} is the longest increasing subsequence.
Input
First line contain one number N (1 <= N <= 10) the length of the list A.
Second line contains N numbers (1 <= each number <= 20), the numbers in the list A separated by spaces.
Output
One line containing the lenght of the longest increasing subsequence in A.
Example
Input:
5
1 4 2 4 3 Output: 3
hide comments
Changming:
2013-07-09 08:27:12
O(N^2) is enough. Because the length of the list A is very small. |
Added by: | Omar ElAzazy |
Date: | 2012-03-17 |
Time limit: | 1.948s |
Source limit: | 50000B |
Memory limit: | 1536MB |
Cluster: | Cube (Intel G860) |
Languages: | All except: ASM64 |